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The laminar and turbulent mixing of jets of 
compressible fluid. Part I Flow far from the orifice 
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SUMMARY 
For flows of jet type, the assumption of a coefficient of eddy 

kinematic viscosity in turbulent flow leads to the possibility of 
combining in one the equations for laminar and turbulent motion. 
An approximation to the solution of these equations is found for 
the flow of compressible fluid issuing from a narrow slit, far from 
the slit. The stream function is expanded in a power series in 
squares of the Mach number. Bickley’s solution (1937) for the 
corresponding problem in incompressible flow is used to  start the 
iterative process by which successive terms of the power series are 
obtained. In  order to find an analytical form for the second term 
of the series, it has been assumed that the Prandtl number is 
unity, that the viscosity varies as the nth power of the absolute 
temperature, and that the stagnation temperature of the jet is the 
same as that of the surrounding gas. The solution found differs 
only slightly from that of Howarth (1948) and Illingworth (1949) 
when laminar flow is considered; only the ‘change of scale’ 
effect (arising from a distortion of the coordinates in Bickley’s 
solution) is of importance. I n  turbulent flow the effect of the 
second term of the series is as important as the ‘ change of scale ’ 
effect. The effect of compressibility on the width of the mixing 
region is discussed for both laminar and turbulent jet flow far 
from the orifice. 

INTRODUCTION 
The problem of the mixing of streams has received a good deal of 

attention, both theoretically and experimentally, in recent years. The 
interest has been in the extension to compressible fluid flow of the problems 
investigated for incompressible fluid during the years before the war. For 
jet flows there are two main simplifications of the real problem ; one is to 
suppose that the jet issues from a narrow slit, in which case the field at 
some distance from the orifice may be examined on the basis of a similarity 
of velocity profiles in sections normal to the axis of the jet, and the other is 
to treat only the so-called ‘ half-jet ’ mixing, being the case when the two 
streams in relative motion are both semi-infinite laterally. Each of these 
problems is itself divisible into two further problems, according as the flow 
is supposed to be laminar or turbulent. 

In this paper it is first shown that the assumption of the existence of an 
eddy kinematic viscosity coefficient in turbulent flow, which is known to 
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be reasonably satisfactory for jet flows, leads to the possibility of combining 
in one the equations for laminar and turbulent motion. Next, an approxi- 
mation to the solution of these equations is found for the flow of compressible 
fluid issuing from a narrow slit, far from the slit. The method used is that 
developed by Pack (1954) for the study of axially symmetric jets of com- 
pressible fluids far from the orifice. The stream function is expanded in 
a power series in squares of the Mach number. The solution of Bickley 
(1937), for the corresponding problem in incompressible flow, is used to 
start the iterative process by which successive terms of the power series 
are obtained. In order to obtain the second term of the series in an analytical 
form, it has been assumed that the Prandtl number is unity, that the viscosity 
varies as the nth power of the absolute temperature, and that the stagnation 
temperature of the jet is the same as that of the surrounding gas. The 
solutions for two-dimensional flow out of a slit obtained by Howarth (1948) 
and Illingworth (1949) are seen as particular cases of the solutions found 
here. The problem of the ' half-jet ' mixing will be considered in a later 
paper. 

EQUATIONS OF MOTION 

Let u, ZI be the velocity components (or mean velocity components in 
the case of turbulent flow) parallel either to Cartesian axes (x ,y )  in two- 
dimensional flow, or to cylindrical coordinates (x ,y )  with x measured along 
the axis of symmetry in axially symmetrical flow. Let the origin of 
coordinates be taken at the point at which the mixing begins. Let p be the 
density of the gas in the jet and T its absolute temperature. 

When the Reynolds number of the flow is large, the approximate equation 
of motion for jet mixing is the same as for boundary-layer flow at constant 
pressure : 

where 6 = 0 for two-dimensional flow and 6 = 1 for flow with axial symmetry. 
I n  this equation E = p/p,  the ordinary kinematic coefficient of viscosity, 
when the motion is laminar, while when the flow is turbulent E = E ( x ) ,  

a coefficient of eddy kinematic viscosity which is assumed to be independent 
of the y-coordinate. 

The equation of continuity is 

From this equation it follows that a stream function + exists such that 

8 a* 8 a* puy = -, pvy = - - 
aY ax* 

If the independent variables are changed to (x, z),  where 
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the equation of motion becomes 

a+ a2+ a+a2$ sa+ a+ -- - axa7 + -- - = ax axaz xax aZ 

T o  allow for the variation of viscosity with temperature, write 

The  boundary-layer assumptions underlying the equations of motion 
imply that pressure is constant, to at least a first approximation, through the 
field, giving p*T* = 1, where p* = p/pl. 

Now write E = ee(x), where (i) in a laminar jet, 6 = p/p and e(z )  = 1, 
and (ii) in a turbulent jet, 0 = E,,, Reichardt's constant exchange coefficient, 
with e(x)  an experimentally determined function of x. Introduce also the 
new independent variable 

5 = j z e ( x )  dx. 
0 

Then the equation of motion reduces to 
a+ az+ s a+ a+ 

ax agaz a g  a x z  + - - - = (6 )  %3--- 
xa,- at 

where cc = pI and /3 = n - 1 for laminar flow, and u = cop1 and 
for turbulent flow. 

= - 2 

The  energy equation is 

where eT = K / p  for laminar flow, K being the coefficient of heat conduction, 
and when the flow is turbulent is the eddy coefficient of heat transfer, 
and where i = C, T (the enthalpy per unit mass), C, being the (supposed 
constant) specific heat a t  constant pressure. 

When it is assumed that the Prandtl number u, which is equal to Cp 
has the value unity, a particular integral satisfying equations (l), (2) and (7) 
is the Crocco relation 

where A and B are constants, the values of which depend upon the boundary 
conditions in the problem considered. 

&3+i = A+Bu,  (8) 

TWO-DIMENSIONAL MOTION 

For two-dimensional flow, 6 = 0 in (6). In  the first place it is of interest 
to note the simplifications of the equation of motion which are then possible. 

When T* = 1, it follows that x = y ,  p = p1 and the equation is that of 
incompressible flow in a boundary layer. The  same equation results when 
p = 0, this corresponding to laminar flow of a compressible fluid with 
viscosity proportional to temperature ( n  = 1); for a two-dimensional jet ,  
this case was treated by Howarth (1948) and Illingworth (1949). 
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FLOW FAR FROM THE ORIFICE IN A TWO-DIMENSIONAL JET OF COMPRESSIBLE 

FLUID 

The  solution for the flow far from the orifice in a two-dimensional 
laminar jet of incompressible fluid was given by Bickley (1937). It is 

4 = tanh a7, (9) 
where 17 = x/c2/3  and a is a scale factor related to the momentum flux out 
of the orifice. It is not difficult to show that, if F is the momentum flux 
per unit time out of unit length of the slit, then a3 = p1 F/48a2. 

The  same solution may clearly be used for the turbulent incompressible 
jet with the proper interpretation of the symbols. When 7 = y /x ,  5 = x3/2, 
the kinematic eddy viscosity coefficient is proportional to x1I2, and the 
solution is identical with that given by Gortler (1942); in this case the jet 
spreads linearly with x, in accordance with the experimental results of 
Forthmann (1934). Gortler's results were in excellent agreement with 
experiment except near the edges of the jet. 

For the jet of compressible fluid, the boundary conditions far downstream 
may be expressed as follows: 

au 

aY 
on y = O ,  v = O ,  and - = 0 ;  

on y = 2 co, u = 0, % = 0, T =  T, a n d p  = p l ,  
au 

where T,  and p1 are respectively the undisturbed temperature and density 
in the outer medium into which the jet spreads. 

When it is assumed that the stagnation temperature of the jet and the 
temperature of the surrounding fluid are the same, Crocco's relation (8) 
takes the form 

where i, is the stagnation enthalpy in the jet. 

of compressible flow in jets. 
required solution. 

$u2+i = il, (11) 

T h e  solution (9) is the starting-point for the solution of the equations 
It is treated as a first approximation to the 

First it is seen that, from (9), 

6a2u 
p1 u = 51j3 sech2aq. 

Insertion of this value into the Crocco relation (1  1) gives for the temperature 

where k2 = 18a4a2/C, p; T,. When E cc x1I2 and Tl is room temperature, 
7'" differs from unity by less than 1% for jets of air with Mach numbers 
on the axis MA < 0.22. For higher Mach numbers it will not be sufficiently 
accurate to use the solution for the incompressible jet flow to yield quantities 
in the compressible jet flow. I n  this case the technique used by Pack (1954) 
for axially symmetrical laminar jets may be employed. This requires the 
setting-up of an iterative process similar to that of Jansen (1913) and 
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Rayleigh (1916) by which the approximate solution at any stage is used to 
obtain a better approximation 

The  stream function # is to be expanded in a series of the form 

1 k2 k4 
tanh a7 + p3 Fl(av) + 5413 F2(a7) + ... . 

This, substituted into equation (6), leads to the following equation for F,, 
on equating coefficients of k2 : 
F: + 2 tanh CFY + 8 sech2f F; + 4 tanh 5 sech2[Fl = 2p sechGE(7 tanh2f - l), 

where the accents denote differentiations with respect to 5 = ay. With 
t = tanh 5, Fl = (1 - t2)G and ( 1  - t 2 ) 2  dGjdt = H(t), the above equation 
simplifies to 

d2H dH 
(1 - t2) dt2 - 2t dt + 4H = 2p(1- t2)2(7t2 - 1). 

A particular integral of this equation is the following polynomial of the 
sixth degree in t : 

The complementary function is a linear combination of Legendre functions : 

where PJt )  = F(-n,, - n 2 ;  1; h(1- t ) )  

and 
with n, and n2 the roots of the quadratic equation n(n + 1) = 4, the notation 
being the usual one for hypergeometric functions. The  boundary conditions 
to be satisfied are: 

F;'(0) = 0 

H 2 &p(17-72t2+45t4- 14t6). 

H = APIL(t) + BQIL(t), 

QJt) = F( - a,, - n2 ; 1 ; h(1 + t)) ,  

1 on t = 0, and Fi(0) is finite; 

on t = 1, lim (1-t2)F;(t) = 0, i.e. lim(l-t)F;(t) = 0, 

and lim {(1-t)2F;(t)-(1-t)F;(t)} = 0. 
t+1 t-+l 

J t-tl 

When the singularities of the Legendre functions near t = 1 are taken into 
account, it follows after some analysis that A = B = 0. Thus, finally, in the 
second approximation, when Fl is calculated from the value obtained for H 

12 tanh 5 - sech2f 

A check on the error involved in the use of the second approximation shows 
that it is likely to be less than 1% for MA < 0.52. In  the neighbourhood 
of MA = 1 the maximum error would be about 2% for laminar flow and 
14% for turblent flow. These estimates are based on the assumption 
that F;1 is of the same order of magnitude as F; on the axis of the jet. 

Thus the second approximation will express the effect of compressibility 
with fair accuracy up  to sonic speed on the axis. For values of MA greater 
than unity the solution still formally applies, but the possibility of the 
occurrence of shock-waves may render it invalid. 
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The values of F,, Fi for various values of t are given in table 1. 
The correspondence between y and z (or t), to the first order in k2, 

requires only the solution for incompressible flow. In fact, 

Thus 

This relation is naturally the same as that obtained by Illingworth for 
the two-dimensional laminar jet, his solution corresponding to the first 
term alone in the expansion of I+5, for reasons already explained above. 

- 

t 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

-- 

- 

f = tanh-'t 

0 
0.100 
0.203 
0.310 
0-424 
0.549 
0.693 
0.867 
1 -099 
1 ~472  

W 

0 
- 5.012 
- 9.490 

-12.919 
- 14.794 
- 14.643 
- 12.019 
-6.482 

2.454 
15.548 
36.000 

-51.000 
-47.852 
-38.777 
- 24.871 

9.863 
25.646 
36.437 
39.027 
29.720 

0 

-7.888 

Table 1. 

The difference between the velocity profiie obtained from the j irs t  
term in the expansion of I+5, when z is expressed in terms of the physical 
ordinate y ,  and the velocity profile in incompressible flow (which comes 
from the same term with x = y )  will be called the ' change of scale ' effect. 
The above expression for y in terms of 5 and 5 shows that this effect tends 
to sharpen the jet, i.e. to decrease the width of the mixing region for both 
laminar and turbulent jets; e.g. when MA = 1.0 the 'change of scale' 
effect diminishes the width of the mixing region by about 20%-the width 
of the jet being defined as 252t3/u. The numerical value of F; is at most 
about 0.107 for a laminar jet. Since J22/52/3 = 0.4M; for a perfect gas 
with y = CJC, = 1.4, the effect of the term FI on the velocity profile 
of a subsonic laminar jet is negligible. This is not true for the turbulent 
jet because the value of F; on the axis is - 17/19. Since Fi is negative, 
then changes sign and decreases to zero with increasing 5, this term tends 
to make the profile of the compressible turbulent jet broader than an 
incompressible turbulent jet with the same axial velocity. For laminar 
and turbulent flow far from the orifice, the net effect of compressibility 
is respectively to decrease and increase the width of the mixing region. 

The analysis shows that the second approximation found in this paper 
will be useful for flows at any subsonic velocity. Higher approximations 
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would require attention to the terms neglected in deriving the boundary- 
layer equations from the full Navier-Stokes equations. T h e  neglected 
terms are of a higher order than those retained in deriving the second 
approximation under the limitation imposed on the solution for the 
incompressible jet, namely p1 MA c2/3 & u2. 

MOTION WITH AXIAL SYMMETRY 

When 6 = 1 it is possible to carry out an iterative process just as above 
which obtains a solution for a jet with axial symmetry. This was done by 
Pack (1954) for a laminar jet. The  equation (6) shows that the same solution, 
correctly interpreted, may also be used for a turbulent jet. The  solution is 

where k2 = 2b4/Cp Tl p:, q = z/l;a1i2, and the relation between b and the 
momentum flux F across a section of the jet is given by b2 = 3p1 F/16rra. 
The  function Fl(r]) is defined by means of a new variable t = 1/(1+ $b2q2) : 

28 45 
57 247 

+ - ( 1  - n)t5 - - (6 + 13n)(t2 - 3t)log t .  

A table of values of Fl and F; when n = 0.76 is given in Pack's paper (1954). 
T h e  same general conclusions as were found for the two-dimensional 

laminar jet for the effects of 'change of scale' and compressibility apply 
equally to the laminar axially symmetric jet. It is found, for axially 
symmetric turbulent jets, that both of the above effects are of the same 
order of magnitude, but just as with the two-dimensional turbulent 
jet the sign of q-lF;(q) on the axis is negative; as q increases q--'F;(q) 
changes sign and then tends to zero as q +  co. This behaviour of 
q-lF;(q) tends to broaden the velocity profile of the jet, but the ' change of 
scale ' is more significant and the net result is that the velocity profile of the 
jet is narrowed as the speed rises, in contrast with two-dimensional flow. 

One of us (L. J. C.) is indebted to the Sir James Caird Trust for a 
Travelling Scholarship which enabled him to take part in this work. 
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